### Article

## Deformations of Lie algebras of Type Dn and Their Factoralgebras over the Field of Characteristic 2

The study of deformations of Lie algebras is related to the problem of classification

of simple Lie algebras over fields of small characteristics. The classification of finite-dimensional

simple Lie algebras over algebraically closed fields of characteristic p > 3 is completed. Over

fields of characteristic 2, a large number of examples of Lie algebras are constructed that do

not fit into previously known schemes. Description of deformations of classical Lie algebras

gives new examples of simple Lie algebras and gives a possibility to describe known examples

as deformations of classical Lie algebras. In this paper, we describe global deformations of Lie

algebras of the type Dn and their quotient algebras Dn by the center in the case of a field of

characteristic 2.

Lie theory, inaugurated through the fundamental work of Sophus Lie during the late nineteenth century, has proved central in many areas of mathematics and theoretical physics. Sophus Lie’s formulation was originally in the language of analysis and geometry; however, by now, a vast algebraic counterpart of the theory has been developed. As in algebraic geometry, the deepest and most far-reaching results in Lie theory nearly always come about when geometric and algebraic techniques are combined. A core part of Lie theory is the structure and representation theory of complex semisimple Lie algebras and Lie groups, which is an exemplary harmonious field in modern mathematics. It has deep ties to physics, and many areas of mathematics, such as combinatorics, category theory, and others. This field has inspired many generalizations, among them the representation theories of affine Lie algebras, vertex operator algebras, locally finite Lie algebras, Lie superalgebras, etc. This volume originates from a pair of sister conferences titled “Algebraic Modes of Representations” held in Israel in July 2017. The first conference took place at the Weizmann Institute of Science, Rehovot, July 16–18, and the second conference took place at the University of Haifa, July 19–23. Both conferences were dedicated to the 75th birthday of Anthony Joseph, who has been one of the leading figures in Lie Theory from the 1970s until today. The conferences were supported by the United States–Israel Binational Science Foundation and the Chorafas Institute for Scientific Exchange (Weizmann part) and by the Israel Science Foundation (Haifa part). Joseph has had a fundamental influence on both classical representation theory and quantized representation theory. A detailed description of his work in both areas has been given in the articles by W. McGovern and D. Farkash–G. Letzter in the volume “Studies in Lie theory,” Progress in Mathematics, vol. 243, Birkhauser. Concerning Joseph’s contribution to classical representation theory, it is impossible not to mention his classification of primitive ideals of the universal enveloping algebra of sl(n). The essential new ingredient here is the introduction of a partition of the Weyl group into left cells, corresponding to the Robinson map from the symmetric group to the standard Young tableaux. Joseph further extended this result to other simple Lie algebras using similar techniques, and this has since then become a powerful tool in Lie theory. As for quantized representation theory, Joseph’s monograph “Quantum Groups and Their Primitive Ideals,” Ergebnisse der Mathematik und Ihrer Grenzgebiete, 3rd series, vol. 29, has had a fundamental influence over the field since its appearance in 1995. The present volume contains 14 original papers covering a broad spectrum of current aspects of Lie theory. The areas discussed include primitive ideals, invariant theory, geometry of Lie group actions, crystals, quantum affine algebras, Yangians, categorification, and vertex algebras. The authors of this volume are happy to dedicate their works to Anthony Joseph.

Under study are the centralizers of 3-dimensional simple Lie subalgebras in the universal enveloping algebra of a 7-dimensional simple Malcev algebra. We find some sets of generators for these centralizers in characteristic not 2 nor 3 and for the subalgebra generated by the centralizer in the central closure of the universal enveloping algebra in characteristic 3. As a corollary of the main theorem we obtain the available description of the center of universal enveloping algebra of a 7-dimensional simple Malcev algebra.

We present a new classification of Clifford algebra elements. Our classification is based on the notion of quaternion type. Using this classification we develop a method for analyzing commutators and anticommutators of Clifford algebra elements. This method allows us to find out and prove a number of new properties of Clifford algebra elements.

A spherical homogeneous space G/H of a connected semisimple algebraic group G is called excellent if it is quasi-affine and its weight semigroup is generated by disjoint linear combinations of the fundamental weights of the group G. All the excellent affine spherical homogeneous spaces are classified up to isomorphism.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.